Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Psychology in the Schools ; 60(5):1488-1498, 2023.
Article in English | Academic Search Complete | ID: covidwho-2306403

ABSTRACT

Given the serious effects of coronavirus disease 2019 on academic burnout, this study aims to examine the multiple mediating roles of negative emotions and phubbing in the relationship between parental marital conflict and academic burnout. A total of 1353 college students participated in this study. The results showed that parental marital conflict not only had a direct effect on academic burnout but also affected academic burnout through three indirect paths: parental marital conflict‐negative emotions‐academic burnout, parental marital conflict‐phubbing‐academic burnout, and parental marital conflict‐negative emotions‐phubbing‐academic burnout. The parental marital conflict increased the risk of negative emotions and phubbing in college students and had a subsequent impact on academic burnout. Implications for prevention and intervention are discussed. Highlights: Parental marital conflict significantly predicted academic burnout in college students.Parental marital conflict affected academic burnout through the indirect effect of negative emotions and phubbing.Negative emotions and phubbing played chain‐mediating roles in the relations between parental marital conflict and academic burnout. [ FROM AUTHOR] Copyright of Psychology in the Schools is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Phytomedicine ; 114: 154796, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306476

ABSTRACT

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Peptides , Plant Extracts , Tandem Mass Spectrometry
3.
Phytomedicine : international journal of phytotherapy and phytopharmacology ; 2023.
Article in English | EuropePMC | ID: covidwho-2288682

ABSTRACT

Background : The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in β-coronaviruses (CoVs) remains a big challenge. Aims : To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. Methods : SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. Results : Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. Conclusion : Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs. Graphical abstract Image, graphical abstract

4.
MedComm (2020) ; 3(3): e151, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2013677

ABSTRACT

The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in ß-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.

5.
MedComm ; 3(3), 2022.
Article in English | EuropePMC | ID: covidwho-1940024

ABSTRACT

The main proteases (Mpro), also termed 3‐chymotrypsin‐like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β‐coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus‐caused infectious diseases, including COVID‐19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS‐CoV‐2 3CLpro inhibitors. To better understand the characteristics of SARS‐CoV‐2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti‐coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS‐CoV‐2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti‐coronavirus agents. A comprehensive summary of recent advances in SARS‐CoV‐2 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives), including the inhibitory activities, inhibitory mechanisms, and key structural features, provides new insights for designing and developing more efficacious 3CLpro inhibitors as broad‐spectrum anti‐coronavirus agents.

6.
Psychology in the Schools ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1802559

ABSTRACT

Given the serious effects of coronavirus disease 2019 on academic burnout, this study aims to examine the multiple mediating roles of negative emotions and phubbing in the relationship between parental marital conflict and academic burnout. A total of 1353 college students participated in this study. The results showed that parental marital conflict not only had a direct effect on academic burnout but also affected academic burnout through three indirect paths: parental marital conflict‐negative emotions‐academic burnout, parental marital conflict‐phubbing‐academic burnout, and parental marital conflict‐negative emotions‐phubbing‐academic burnout. The parental marital conflict increased the risk of negative emotions and phubbing in college students and had a subsequent impact on academic burnout. Implications for prevention and intervention are discussed. [ FROM AUTHOR] Copyright of Psychology in the Schools is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1639437

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
8.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1474606

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
9.
Health Inf Sci Syst ; 9(1): 11, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1375014

ABSTRACT

Kawasaki Disease is a vasculitis syndrome that is extremely harmful to children. Kawasaki Disease can cause severe symptoms of ischemic heart disease or develop into ischemic heart disease, leading to death in children. Researchers and clinicians need to analyze various knowledge and data resources to explore aspects of Kawasaki Disease. Knowledge Graphs have become an important AI approach to integrating various types of complex knowledge and data resources. In this paper, we present an approach for the construction of Knowledge Graphs of Kawasaki Disease. It integrates a wide range of knowledge resources related to Kawasaki Disease, including clinical guidelines, clinical trials, drug knowledge bases, medical literature, and others. It provides a basic integration foundation of knowledge and data concerning Kawasaki Disease for clinical study. In this paper, we will show that this disease-specific Knowledge Graphs are useful for exploring various aspects of Kawasaki Disease.

10.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1305238

ABSTRACT

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Vitamin K 3 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Vitamin K 3/analogs & derivatives , Vitamin K 3/chemistry , COVID-19 Drug Treatment
11.
Fitoterapia ; 152: 104909, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1203052

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Coronavirus Protease Inhibitors/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Humans , Molecular Structure , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , SARS-CoV-2/enzymology , Salicylates/pharmacology , Salicylates/therapeutic use
12.
Ther Clin Risk Manag ; 17: 9-21, 2021.
Article in English | MEDLINE | ID: covidwho-1030561

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel pathogen, has caused an outbreak of coronavirus disease 2019 (COVID-19) that has spread rapidly around the world. Determining the risk factors for death and the differences in clinical features between severely ill and critically ill patients with SARS-CoV-2 pneumonia has become increasingly important. AIM: This study was intended to provide insight into the difference between severely ill and critically ill patients with SARS-CoV-2 pneumonia. METHODS: In this retrospective, multicenter cohort study, we enrolled 62 seriously ill patients with SARS-CoV-2 pneumonia who had been diagnosed by March 12, 2020. Clinical data, laboratory indexes, chest images, and treatment strategies collected from routine medical records were compared between severely ill and critically ill patients. Univariate and multivariate logistic regression analyses were also conducted to identify the risk factors associated with the progression of patients with severe COVID-19. RESULTS: Of the 62 patients with severe or critical illness, including 7 who died, 30 (48%) patients had underlying diseases, of which the most common was cardiovascular disease (hypertension, 34%, and coronary heart disease, 5%). Compared to patients with severe disease, those with critical disease had distinctly higher white blood cell counts, procalcitonin levels, and D-dimer levels, and lower hemoglobin levels and lymphocyte counts. Multivariate regression showed that a lymphocyte count less than 109/L (odds ratio 20.92, 95% CI 1.76-248.18; p=0.02) at admission increased the risk of developing a critical illness. CONCLUSION: Based on multivariate regression analysis, a lower lymphocyte count (<109/L) on admission is the most critical independent factor that is closely associated with an increased risk of progression to critical illness. Age, underlying diseases, especially hypertension and coronary heart disease, elevated D-dimer, decreased hemoglobin, and SOFA score, and APACH score also need to be taken into account for predicting disease progression. Blood cell counts and procalcitonin levels for the later secondary bacterial infection have a certain reference values.

13.
PLoS Negl Trop Dis ; 15(1): e0008975, 2021 01.
Article in English | MEDLINE | ID: covidwho-1013202

ABSTRACT

Wuhan City (WH) in China was the first place to report COVID-19 in the world and the outbreak of COVID-19 was controlled in March of 2020 in WH. It is unclear what percentage of people were infected with SARS-CoV-2 and what percentage of population is carriers of SARS-CoV-2 in WH. We retrospectively analyzed the SARS-CoV-2 IgG and IgM antibody positive rates in 63,107 healthy individuals from WH and other places of China using commercial colloidal gold detection kits from March 6 to May 3, 2020. Statistical approaches were utilized to explore the difference and correlation for the seropositive rate of IgG and IgM antibody on the basis of sex, age group, geographic region and detection date. The total IgG and IgM antibody positive rate of SARS-CoV-2 was 1.68% (186/11,086) in WH, 0.59% (226/38,171) in Hubei Province without Wuhan (HB), and 0.38% (53/13,850) in the nation except for Hubei Province (CN), respectively. The IgM positive rate was 0.46% (51/11,086) in WH, 0.13% (51/38,171) in HB, and 0.07% (10/13,850) in CN. The incidence of IgM positive rates in healthy individuals increased from March 6 to May 3, 2020 in WH. Female and older age had a higher probability of becoming infected than males (OR = 1.34; 95% CI: 1.08-1.65) or younger age (OR = 2.25; 95% CI: 1.06-4.78). The seroprevalence of SARS-CoV-2 was relatively low in WH and other places of China, but it is significantly high in WH than other places of China; a large amount of asymptomatic carriers of SARS-CoV-2 existed after elimination of clinical cases of COVID-19 in Wuhan City. Therefore, SARS-CoV-2 may exist in a population without clinical cases for a long period.


Subject(s)
COVID-19/epidemiology , Carrier State/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Antibodies, Viral/blood , China/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Logistic Models , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , Sex Factors , Time Factors , Young Adult
14.
Intern Emerg Med ; 16(4): 925-932, 2021 06.
Article in English | MEDLINE | ID: covidwho-893333

ABSTRACT

We aimed at establishing a new COVID-19 risk scores, serving as a guide for rapidly screening the COVID-19 patients in order to reduce the risk of COVID-19 hospital-related transmission. As the COVID-19 disease is breaking out across the world, hospital-related transmission is one of the main factors accountable for the spread of COVID-19. For COVID-19 prevention it is urgent to establish a fast and efficient screening strategy for the COVID-19 patients. We analyzed 335 patients (including 124 patients with COVID-19). Five significant clinical attributes were selected as the components for establishing a COVID-19 risk score system, and every attribute was assigned a specific score according to their respective odds ratio values. We also compared three different screening schemes (Scheme I: temperature higher than 37.2 °C on admission, Scheme II: exposure to a source of transmission within 14 days in addition to fever, Scheme III: our new COVID-19 risk score) in terms of their respective receiver operating characteristic (ROC) curves, so as to evaluate their respective screening effectiveness. Five significant risk factors, which were exposed to a source of transmission (9 points), cluster onset (6 points), history of fever or temperature higher than 37.2 °C on admission (4 points), cough (1 point) and other atypical symptoms (1 point), were ultimately selected from many candidates to construct the new rapid COVID-19 screening program. Based on the screening scheme, the patients were quickly divided into three subgroups according to their respective COVID-19 risk scores: low risk (≤ 6 points, risk < 10%), medium risk (7-13 points) and high risk (≥ 14 points, risk > 80%). When the score of 10 points was selected as a cut-off point for differentiating the patients with COVID-19 from all of the other patients, the sensitivity was 93.6%, with a specificity of 86.3%. The area under the ROC curve (AUC) of COVID-19 risk score system was 0.96 (P = 0.000), much higher than the AUCs of Scheme I (0.56, P = 0.000) and Scheme II (0.85, P = 0.000), respectively. Our COVID-19 risk score system can help the clinicians effectively and rapidly identify and differentiate the patients with COVID-19 infections, to be mainly used in those areas where COVID-19 still exhibits epidemiological characteristics.


Subject(s)
COVID-19/diagnosis , Emergency Service, Hospital , Mass Screening , Adult , COVID-19/complications , COVID-19/transmission , China , Female , Fever/diagnosis , Fever/virology , Humans , Male , Middle Aged , Odds Ratio , Predictive Value of Tests , ROC Curve , Retrospective Studies , Risk Factors , Symptom Assessment
15.
Infect Dis Poverty ; 9(1): 117, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-730583

ABSTRACT

BACKGROUND: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also called 2019-nCoV) causes different morbidity risks to individuals in different age groups. This study attempts to quantify the age-specific transmissibility using a mathematical model. METHODS: An epidemiological model with five compartments (susceptible-exposed-symptomatic-asymptomatic-recovered/removed [SEIAR]) was developed based on observed transmission features. Coronavirus disease 2019 (COVID-19) cases were divided into four age groups: group 1, those ≤ 14 years old; group 2, those 15 to 44 years old; group 3, those 45 to 64 years old; and group 4, those ≥ 65 years old. The model was initially based on cases (including imported cases and secondary cases) collected in Hunan Province from January 5 to February 19, 2020. Another dataset, from Jilin Province, was used to test the model. RESULTS: The age-specific SEIAR model fitted the data well in each age group (P < 0.001). In Hunan Province, the highest transmissibility was from age group 4 to 3 (median: ß43 = 7.71 × 10- 9; SAR43 = 3.86 × 10- 8), followed by group 3 to 4 (median: ß34 = 3.07 × 10- 9; SAR34 = 1.53 × 10- 8), group 2 to 2 (median: ß22 = 1.24 × 10- 9; SAR22 = 6.21 × 10- 9), and group 3 to 1 (median: ß31 = 4.10 × 10- 10; SAR31 = 2.08 × 10- 9). The lowest transmissibility was from age group 3 to 3 (median: ß33 = 1.64 × 10- 19; SAR33 = 8.19 × 10- 19), followed by group 4 to 4 (median: ß44 = 3.66 × 10- 17; SAR44 = 1.83 × 10- 16), group 3 to 2 (median: ß32 = 1.21 × 10- 16; SAR32 = 6.06 × 10- 16), and group 1 to 4 (median: ß14 = 7.20 × 10- 14; SAR14 = 3.60 × 10- 13). In Jilin Province, the highest transmissibility occurred from age group 4 to 4 (median: ß43 = 4.27 × 10- 8; SAR43 = 2.13 × 10- 7), followed by group 3 to 4 (median: ß34 = 1.81 × 10- 8; SAR34 = 9.03 × 10- 8). CONCLUSIONS: SARS-CoV-2 exhibits high transmissibility between middle-aged (45 to 64 years old) and elderly (≥ 65 years old) people. Children (≤ 14 years old) have very low susceptibility to COVID-19. This study will improve our understanding of the transmission feature of SARS-CoV-2 in different age groups and suggest the most prevention measures should be applied to middle-aged and elderly people.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Betacoronavirus/isolation & purification , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
16.
Med. J. Chin. Peoples Liberation Army ; 5(45):481-485, 2020.
Article in Chinese | ELSEVIER | ID: covidwho-701008

ABSTRACT

Objective To investigate the clinical features of 13 fatal cases of corona virus disease 2019 (COVID-19). Methods The clinical data of 13 patients who died of COVID-19 in Central Theater General Hospital, China, between January 4, 2020, and February 24, 2020, were analyzed retrospectively. The data reviewed included clinical manifestations, laboratory test results, radiographic features and dinical treatment plan. The cellular immune function, the expression of inflammatory factors, and lactate level in deceased patients at different stages of the disease were analyzed. Results Of those who died, the patients consisted of 10 men and 3 women. The age of those who died was (74±19) years, and 10(76.9%) patients were over 70 years old. For the patients who died, 9 presented with underlying diseases, 6(46.2%) of whom had more than 2 diseases. On admission, the chest computed tomography (CT) for 8 patients (61.5%) mainly showed multiple patchy ground-glass opacities. When the disease progressed, the ground-glass opacities rapidly developed into diffuse lesions in both lungs. The lymphocyte and CD3+, CD4+, and CD8+ T lymphocyte counts in the peripheral blood of 13 patients were significantly lower than normal levels and decreased more substantially during the disease course based on the levels when admitted (P<0.01). Additionally, the interleukin (IL)-6, D-dimer, C-reactive protein (CRP), lactic acid levels gradually increased, and most peaked before death. The cause of death for most patients was acute respiratory distress syndrome (ARDS) with type I respiratory failure. Three patients eventually developed multiorgan deficiency syndrome (MODS). Conclusions The risk factors of death for COVID-19 patients included older men, more underlying diseases, poor cellular immune function and over-expression of inflammatory factors. The main cause of death in patients with COVID-19 was ARDS, which led to respiratory failure and MODS.

17.
BMC Infect Dis ; 20(1): 519, 2020 Jul 16.
Article in English | MEDLINE | ID: covidwho-651141

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a novel infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan and has quickly spread across the world. The mortality rate in critically ill patients with COVID-19 is high. This study analyzed clinical and biochemical parameters between mild and severe patients, helping to identify severe or critical patients early. METHODS: In this single center, cross-sectional study, 143 patients were included and divided to mild/moderate and sever/critical groups. Correlation between the disease criticality and clinical features and peripheral blood biochemical markers was analyzed. Cut-off values for critically ill patients were speculated through the ROC curve. RESULTS: Significantly, disease severity was associated with age (r = 0.458, P < 0.001), comorbidities (r = 0.445, P < 0.001), white cell count (r = 0.229, P = 0.006), neutrophil count (r = 0.238, P = 0.004), lymphocyte count (r = - 0.295, P < 0.001), albumin (r = - 0.603, P < 0.001), high-density lipoprotein cholesterol (r = - 0.362, P < 0.001), serum potassium (r = - 0.237, P = 0.004), plasma glucose (r = 0.383, P < 0.001), total bilirubin (r = 0.340, P < 0.001), serum amyloid A (r = 0.58, P < 0.001), procalcitonin (r = 0.345, P < 0.001), C-reactive protein (r = 0.477, P < 0.001), lactate dehydrogenase (r = 0.548, P < 0.001), aspartate aminotransferase (r = 0.342, P < 0.001), alanine aminotransferase (r = 0.264, P = 0.001), erythrocyte sedimentation rate (r = 0.284, P = 0.001) and D-dimer (r = 0.477, P < 0.001) . CONCLUSIONS: With the following parameters such as age > 52 years, C-reactive protein > 64.79 mg/L, lactate dehydrogenase > 245 U/L, D-dimer > 0.96 µg/mL, serum amyloid A > 100.02 mg/L, or albumin < 36 g/L, the progress of COVID-19 to critical stage should be closely observed and possibly prevented. Lymphocyte count, serum potassium, high-density lipoprotein cholesterol and procalcitonin may also be a prognostic indicator.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Adult , Aged , Betacoronavirus/pathogenicity , Biomarkers/blood , COVID-19 , China/epidemiology , Cholesterol, HDL/blood , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Female , Humans , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Potassium/blood , Procalcitonin/blood , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL